- C.P. Behrenbruch, K. Marias, P.A. Armitage, M.Yam, N.R. Moore, R.E. English, J. Clarke, and M.J. Brady, “Fusion of contrast-enhanced breast MR and mammographic imaging data,” Medical image analysis, vol. 7, no. 3, pp. 311–340, Sep. 2003, England (1361-8415; 1361-8415), http://doi.org/10.1016/S1361-8415(03)00015-X
- C.P. Behrenbruch, K. Marias, P.A. Armitage, M. Yam, N. R. Moore, R.E. English, P.J. Clarke, F.J. Leong, and M.J. Brady, “Fusion of contrast-enhanced breast MR and mammographic imaging data,” The British journal of radiology, 2004, 77 Spec No 2, (S201-8), England (0007-1285; 0007-1285), https://doi.org/10.1259/bjr/66587930
- K. Marias, C. Behrenbruch, R. Highnam, S. Parbhoo, A. Seifalian, and M. Brady, “A mammographic image analysis method to detect and measure changes in breast density,” Eur. J. Radiol., vol. 52, no. 3, pp. 276–282, Dec. 2004, http://doi.org/10.1016/j.ejrad.2004.02.014
- K. Marias, J. Ripoll, H. Meyer, V. Ntziachristos, and S. Orphanoudakis, “Image analysis for assessing molecular activity changes in time-dependent geometries,” IEEE Trans. Med. Imaging, vol. 24, no. 7, pp. 894–900, Jul. 2005, http://doi.org/10.1109/TMI.2005.848612
- K. Marias, C. Behrenbruch, S. Parbhoo, A. Seifalian, and M. Brady, “A registration framework for the comparison of mammogram sequences,” IEEE Trans. Med. Imaging, vol. 24, no. 6, pp. 782–790, Jun. 2005, (02780062), http://doi.org/10.1109/TMI.2005.848374
- M.G. Linguraru, K. Marias, R.E. English, and M.J. Brady, “A biologically inspired algorithm for microcalcification cluster detection,” Med. Image Anal., vol. 10, no. 6, pp. 850–862, Dec. 2006, http://doi.org/10.1016/j.media.2006.07.004
- S. Dimitriadis, K. Marias, and S.C. Orphanoudakis, “A multi-agent platform for content-based image retrieval,” Multimed. Tools Appl., Hingham, MA, USA: Kluwer Academic Publishers (1380-7501), vol. 33, no. 1, pp. 57–72, Mar. 2007, http://doi.org/10.1007/s11042-006-0095-2
- A. Darrell, H. Meyer, K. Marias, M. Brady, and J. Ripoll, “Weighted filtered backprojection for quantitative fluorescence optical projection tomography,” Phys. Med. Biol., vol. 53, no. 14, pp. 3863–3881, Jul. 2008, http://doi.org/10.1088/0031-9155/53/14/010
- C. Farmaki, K. Marias, V. Sakkalis, and N. Graf, “Spatially adaptive active contours: a semi-automatic tumor segmentation framework,” Int. J. Comput. Assist. Radiol. Surg., vol. 5, no. 4, pp. 369–384, Jul.2010, http://doi.org/10.1007/s11548-010-0477-9
- E. Skounakis, C. Farmaki, V. Sakkalis, A. Roniotis, K. Banitsas, N. Graf, and K. Marias, “DoctorEye: A Clinically Driven Multifunctional Platform, for Accurate Processing of Tumors in Medical Images,” Open Med. Inform. J., Special Issue: Intelligent signal and image processing in eHealth. The Open Medical Informatics Journal, vol. 4, no. 1, pp. 105–115, Jul. 2010, http://doi.org/10.2174/1874431101004010105
- A. Roniotis, K. Marias, V. Sakkalis, and M.E. Zervakis, “Diffusive Modelling of Glioma Evolution: A review,” Journal of Biomedical Science and Engineering, J. Biomed. Sci. Eng., vol. 03, no. 05, pp. 501–508, 2010, http://doi.org/10.4236/jbise.2010.35070
- K. Marias, D.D. Dionysiou, V. Sakkalis, N. Graf, R. Bohle, P.V. Coveney, S. Wan, A. Folarin, P. Büchler, M. Reyes, G. Clapworthy, E. Liu, J. Sabczynski, T. Bily, A. Roniotis, and M.N. Tsiknakis, “Clinically-Driven Design of Multiscale Cancer Models: the Contra Cancrum Project Paradigm,” J.R. Soc Interface Focus., vol. 1, pp. 450-461, 2011 , http://doi.org/10.1098/rsfs.2010.0037 IF 3.856
- A. Roniotis, G.C. Manikis, V. Sakkalis, M.E. Zervakis, I. Karatzanis, and K. Marias, “High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 2, pp. 255–263, Mar. 2012, http://doi.org/10.1109/TITB.2011.2171190
- A. Roniotis, K. Marias, V. Sakkalis, G.C. Manikis, and M.E. Zervakis, “Simulating Radiotherapy Effect in High-Grade Glioma by Using Diffusive Modeling and Brain Atlases,” J. Biomed. Biotechnol., vol. 2012, pp. 1–9, 2012, http://doi.org/10.1155/2012/715812
- A. Roniotis, V. Sakkalis, I. Karatzanis, M.E. Zervakis, and K. Marias, “In-depth analysis and evaluation of diffusive glioma models,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3, pp. 299–307, 2012, http://doi.org/10.1109/TITB.2012.2185704
- G. Stamatakos, D. Dionysiou, A. Lunzer, R. Belleman, E. Kolokotroni, E. Georgiadi, M. Erdt, J. Pukacki, S. Rueping, S. Giatili, A. d’Onofrio, S. Sfakianakis, K. Marias, C. Desmedt, M. Tsiknakis, and N. Graf, “The Technologically Integrated Oncosimulator: Combining Multiscale Cancer Modeling with Information Technology in the In Silico Oncology Context,” IEEE journal of biomedical and health informatics, vol. 18, no. 3, pp. 840–854, May 2014, http://doi.org/10.1109/JBHI.2013.2284276
- D. Johnson, S. McKeever, G. Stamatakos, D. Dionysiou, N. Graf, V. Sakkalis, K. Marias, Z. Wang, and T.S. Deisboec, “Dealing with Diversity in Computational Cancer Modeling,” Cancer informatics, vol. 12, pp. 115-124, p. CIN.S11583, May 2013, http://doi.org/10.4137/CIN.S11583
- I. Genitsaridi, H. Kondylakis, L. Koumakis, K. Marias, and M.N. Tsiknakis, “Evaluation of personal health record systems through the lenses of EC research projects,” Computers in biology and medicine, vol. 59, pp. 175–185, Apr. 2015, http://doi.org/10.1016/j.compbiomed.2013.11.004
- I. Genitsaridi, H. Kondylakis, L. Koumakis, K. Marias, and M.N. Tsiknakis, “Towards Intelligent Personal Health Record Systems: Review, Criteria and Extensions,” Procedia Computer Science, vol. 21, pp. 327–334, 2013, http://doi.org/10.1016/j.procs.2013.09.043
- H. Kondylakis, E. Kazantzaki, L. Koumakis, I. Genitsaridi, K. Marias, A. Gorini, K. Mazzocco, G. Pravettoni, D. Burke, G. McVie and M.N. Tsiknakis, “Development of interactive empowerment services in support of personalised medicine,” eCancer Medical Science Journal, vol. 8, :400, Feb. 2014, http://doi.org/10.3332/ecancer.2014.400
- V. Sakkalis, S. Sfakianakis, E. Tzamali, K. Marias, G. Stamatakos, F. Misichroni, E. Ouzounoglou, E. Kolokotroni, D. Dionysiou, D Johnson, S. McKeever, and N. Graf, “Web-Based Workflow Planning Platform Supporting the Design and Execution of Complex Multiscale Cancer Models,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 3, pp. 824–831, May 2014, http://doi.org/10.1109/JBHI.2013.2297167
- E. Spanakis, V. Sakkalis, K. Marias, and A. Traganitis, “Cross Layer Interference Management in Wireless Biomedical Networks,” Entropy, vol. 16, no. 4, pp. 2085–2104, Apr. 2014, http://doi.org/10.3390/e16042085
- E. Tzamali, G. Grekas, K. Marias, and V. Sakkalis, “Exploring the Competition between Proliferative and Invasive Cancer Phenotypes in a Continuous Spatial Model,” PLoS One, vol. 9, no. 8, p. e103191, Aug. 2014, http://doi.org/10.1371/journal.pone.0103191
- M. Spanakis, and K. Marias, “In silico evaluation of gadofosveset pharmacokinetics in different population groups using the Simcyp® simulator platform,” In Silico Pharmacology, vol. 2, no. 1, pp. 1–9, Dec. 2014, http://doi.org/10.1186/s40203-014-0002-x
- D. Chourmouzi, E. Papadopoulou, K. Marias, and A. Drevelegas, “Imaging of Brain Tumors,” Surgical Oncology Clinics of North America, vol. 23, no. 4, pp. 629–684, Oct. 2014, http://doi.org/10.1016/j.soc.2014.07.004
- D.M.J. Lambregts, M.H. Martens, R.C.W. Quah, K. Nikiforaki, L.A. Heijnen, C.H.C. Dejong, G. L. Beets, K. Marias, N. Papanikolaou and R.G.H. Beets-Tan, “Whole-liver diffusion-weighted MRI histogram analysis: effect of the presence of colorectal hepatic metastases on the remaining liver parenchyma,” European Journal of Gastroenterology & Hepatology vol. 27, no. 4, pp. 399–404, Apr. 2015, http://doi.org/10.1097/MEG.0000000000000316
- V. Lagani, F. Chiarugi, D. Manousos, V. Verma, J. Fursse, K. Marias, and I. Tsamardinos, “Realization of a service for the long-term risk assessment of diabetes-related complications,” Journal of Diabetes and Its Complications, vol. 29, no. 5, pp. 691–698, Jul. 2015, http://doi.org/10.1016/j.jdiacomp.2015.03.011
- S. Müller, R. David, K. Marias, and N. Graf, “The Standardized Histogram Shift of T2 Magnetic Resonance Image (MRI) Signal Intensities of Nephroblastoma Does Not Predict Histopathological Diagnostic Information,” Cancer Informatics: Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes, vol. 14, Suppl. 1, pp. 1-5, Jan. 2015, http://doi.org/10.4137/CIN.S19340
- A. Roniotis, Μ.E. Oraiopoulou, E. Tzamali, E. Kontopodis, S. Van Cauter, V. Sakkalis, and K. Marias “A proposed paradigm shift in initializing cancer predictive models with DCE-MRI based PK parameters: A feasibility study,” Cancer Informatics: Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes, vol. 14, Suppl. 4, pp. 7–18, 2015, http://doi.org/10.4137/CIN.S19339
- E. Kontopodis, G. Kanli, G. C. Manikis, S. Van Cauter, and K. Marias, “Assessing Treatment Response through Generalized Pharmacokinetic Modeling of DCE-MRI Data,” Cancer Informatics: Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes, vol. 14s4, p. CIN.S19342, Jan. 2015, http://doi.org/10.4137/CIN.S19342
- G. Tzedakis, E. Tzamali, K. Marias, and V. Sakkalis, “The Importance of Neighborhood Scheme Selection in Agent-based Tumor Growth Modeling,” Cancer Inform.: Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes, vol. 14, Suppl. 4, pp. 67–81, p. CIN.S19343, Jan. 2015, http://doi.org/10.4137/CIN.S19343
- D. Johnson, J. Osborne, Z. Wang, and K. Marias, “Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes (Editorial)”, Cancer Informatics: Computer Simulation, Visualization, and Image Processing of Cancer Data and Processes, vol. 14, suppl. 4, pp. 105–108, 2015, http://doi.org/10.4137/CIN.S37982
- L. Koumakis, K. Sigdel, G. A. Potamias, S. G. Sfakianakis, J. van Leeuwen, G. Zacharioudakis, V.A., Moustakis, M.E. Zervakis, A. Bucur, K. Marias, N. Graf, and M.N. Tsiknakis, “Bridging miRNAs and pathway analysis in clinical decision support; a case study in nephroblastoma,” Network Modeling Analysis in Health Informatics and Bioinformatics, vol. 4, no. 1, p. 30, Dec. 2015, http://doi.org/10.1007/s13721-015-0102-5
- P. Sfakianaki, L. Koumakis, S.G. Sfakianakis, G. Iatraki, G. Zacharioudakis, N. Graf, K. Marias, and M.N. Tsiknakis, “Semantic biomedical resource discovery: a Natural Language Processing framework,” BMC Medical Informatics and Decision Making, vol. 15, no. 1, p. 77, Dec. 2015, http://doi.org/10.1186/s12911-015-0200-4
- M.H Martens, D.M.J. Lambregts, N. Papanikolaou, S. Alefantinou, M. Maas, G. C. Manikis, K. Marias, R. G. Riedl, G. L. Beets, and R. G. H. Beets-Tan, “Magnetization transfer imaging to assess tumour response after chemoradiotherapy in rectal cancer,” European Radiology, vol. 26, no. 2, pp. 390–397, Feb. 2016, http://doi.org/10.1007/s00330-015-3856-3
- E.G. Spanakis, S. Santana, M.N. Tsiknakis, K. Marias, V. Sakkalis, A. Teixeira, J. H Janssen, H. Jong and C. Tziraki, “Technology-Based Innovations to Foster Personalized Healthy Lifestyles and Well-Being: A Targeted Review,” Journal of Medical Internet Research, vol. 18, no. 6, p. e128, Jun. 2016, http://doi.org/10.2196/jmir.4863
- Y. Andreu, F. Chiarugi, S. Colantonio, G. Giannakakis, G. Giorgi, P. Henriquez, E. Kazantzaki, D. Manousos, K. Marias, M.A. Matuszewski, BJ. Pascali, M. Pediaditis, G. Raccichini, and M.N. Tsiknakis, “Wize mirror – a smart, multisensory cardio-metabolic risk monitoring system,” Elsevier, Comput. Vis. Image Underst., vol. 148, pp. 3–22, Jul. 2016, http://doi.org/10.1016/j.cviu.2016.03.018
- H. Kondylakis , B. Claerhout, M. Keyur, L. Koumakis, J. van Leeuwen, K. Marias, D.Perez-Rey, K. De Schepper, M.N. Tsiknakis, and A. Bucur, “The INTEGRATE project: Delivering solutions for efficient multi-centric clinical research and trials,” Journal of Biomedical Informatics, vol. 62, pp. 32–47, Aug. 2016, http://doi.org/10.1016/j.jbi.2016.05.006
- N. Kartalis, G. Manikis, L. Loizou, N. Albiin, F. G Zöllner, M. Del Chiaro, K. Marias, and N. Papanikolaou, “Diffusion-weighted MR imaging of pancreatic cancer: A comparison of mono-exponential, bi-exponential and non-Gaussian kurtosis models,” European Journal of Radiology Open, vol. 3, pp. 79–85, 2016, http://doi.org/10.1016/j.ejro.2016.04.002
- L. Koumakis, A. Kanterakis, E. Kartsaki, M. Chatzimina, M. Zervakis, M. Tsiknakis, D. Vassou, D. Kafetzopoulos, K. Marias, V. Moustakis, and G. Potamias,“MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways,” PLOS Comput. Biol., vol. 12, no. 11, p. e1005187, Nov. 2016, http://doi.org/10.1371/journal.pcbi.1005187
- C. Spanakis, E. Mathioudakis, N. Kampanis, M. Tsiknakis, and K. Marias, “A Proposed Method for Improving Rigid Registration Robustness,” International Journal of Computer Science and Information Security, Pittsburgh, vol. 14, no. 5, pp. 1–11, Accessed: May 28, 2020.
- M. Spanakis, E. Kontopodis, S. Van Cauter, V. Sakkalis, and K. Marias, “Assessment of DCE–MRI parameters for brain tumors through implementation of physiologically–based pharmacokinetic model approaches for Gd-DOTA,” Springer, Journal of Pharmacokinetics and Pharmacodynamics, vol. 43, no. 5, pp. 529–547, 2016, http://doi.org/10.1007/s10928-016-9493-x.
- H. Kondylakis, L. Koumakis, S. Hänold, I. Nwankwo, N. Forgó, K. Marias, M.N. Tsiknakis, and N. Graf, “Donor’s support tool: Enabling informed secondary use of patient’s biomaterial and personal data,” Int. J. Med. Inform., vol. 97, pp. 282–292, Jan. 2017, http://doi.org/10.1016/j.ijmedinf.2016.10.019
- G. Giannakakis, M. Pediaditis, D. Manousos, E. Kazantzaki, F. Chiarugi, P.G. Simos, K. Marias, and M.N. Tsiknakis, “Stress and anxiety detection using facial cues from videos,” Biomedical Signal Processing and Control, vol. 31, pp. 89–101, Jan. 2017, http://doi.org/10.1016/j.bspc.2016.06.020
- K. Nikiforaki, G.C. Manikis, T. Boursianis, K. Marias, A. Karantanas, and T.G. Maris, “The Impact of Spin Coupling Signal Loss on Fat Content Characterization in Multi-Echo multi echo acquisitions with different echo spacing,” Elsevier, Magnetic Resonance Imaging, vol. 38, pp. 6–12, May 2017, http://doi.org/10.1016/j.mri.2016.12.011
- P. Henriquez, B. J. Matuszewski, Y. Andreu-Cabedo, L. Bastiani, S. Colantonio, G. Coppini, M. D’Acunto, R. Favilla, D. Germanese, D. Giorgi, P. Marraccini, M. Martinelli, M. A. Pascali, M. Righi, O. Salvetti, M. Larsson, T. Stromberg, L. Randeberg, A. Bjorgan, G. Giannakakis, M. Pediaditis, F. Chiarugi, K. Marias, and M.N. Tsiknakis, “Mirror mirror on the wall… an unobtrusive intelligent multisensory mirror for well-being status self-assessment and visualization,” IEEE Transaction on Multimedia, vol. 19, no. 7, pp. 1467–1481, Jul. 2017, http://doi.org/10.1109/TMM.2017.2666545
- A. Pampouchidou, P. Simos, K. Marias, F. Meriaudeau, F. Yang, M. Pediaditis, and M.N. Tsiknakis, “Automatic Assessment of Depression Based on Visual Cues: A Systematic Review,” IEEE Transactions on Affective Computing, Institute of Electrical and Electronics Engineers Inc., vol. 10, no. 4. pp. 445–470, 2017, http://doi.org/10.1109/TAFFC.2017.2724035
- A. Pampouchidou, M. Pediaditis, A.Maridaki, M. Awais, C.M. Vazakopoulou, S. Sfakianakis, M.N. Tsiknakis, P. Simos, K. Marias, F. Yang, and F. Meriaudeau, “Quantitative comparison of motion history image variants for video-based depression assessment,” IEEE Transactions on Multimedia EURASIP J. Image Video Process., vol. 2017, no. 1, p. 64, Dec. 2017, http://doi.org/10.1186/s13640-017-0212-3
- D.G. Katehakis, H. Kondylakis, L. Koumakis, A. Kouroubali, and K. Marias, “Integrated Care Solutions for the Citizen: Personal Health Record Functional Models to Support Interoperability,” Eur. J. Biomed. Informatics, vol. 13, no. 1, 2017, http://doi.org/10.24105/ejbi.2017.13.1.8
- G.Z. Papadakis, S. Jha, T. Bhattacharyya, C. Millo, T.W. Tu, U. Bagci, K. Marias, A. H Karantanas, and N. J Patronas, “18F-NaF PET/CT in Extensive Melorheostosis of the Axial and Appendicular Skeleton With Soft-Tissue Involvement,” Clin. Nucl. Med., vol. 42, no. 7, pp. 537–539, Jul. 2017, http://doi.org/10.1097/RLU.0000000000001647
- G.C. Manikis, K. Marias, D.M.J. Lambregts, K. Nikiforaki, M.M. van Heeswijk, F.C.H. Bakers, R.G.H. Beets-Tan, N. Papanikolaou, “Diffusion weighted imaging in patients with rectal cancer: Comparison between Gaussian and non-Gaussian models,” PloS one, vol. 12, no. 9, p. e0184197, Sep. 2017, http://doi.org/10.1371/journal.pone.0184197
- M. Venianaki, O. Salvetti, E. de Bree, T.G. Maris, A.H. Karantanas, E. Kontopodis, K. Nikiforaki, and K. Marias, “Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma,” Multimed. Tools Appl., vol. 77, no. 8, pp. 9417–9439, Apr. 2018, http://doi.org/10.1007/s11042-017-5046-6
- G. Iatraki, H. Kondylakis, L. Koumakis, M. Chatzimina, K. Marias, M.N. Tsiknakis,“Personal Health Information Recommender: A Tool for the Empowerment of Cancer Patients,” eCancer Medical Science, vol. 12, Jul. 2018, http://doi.org/10.3332/ecancer.2018.851
- F. Schera, M. Schäfer, A. Bucur, J. van Leeuwen, E. H. Ngantchjon, N. Graf, H. Kondylakis, L. Koumakis, K. Marias, and S. Kiefer, “iManageMyHealth and iSupportMyPatients: mobile decision support and health management apps for cancer patients and their doctors,” eCancer medical science, vol. 12, Jul. 2018, http://doi.org/10.3332/ecancer.2018.848
- G.S. Ioannidis, K. Marias, N. Galanakis, K. Perisinakis, A. Hatzidakis, D. Tsetis, A.H.Karantanas, and T.G. Maris, “A correlative study between diffusion and perfusion MR imaging parameters on peripheral arterial disease data,” Magnetic resonance imaging, Elsevier, vol. 55, pp. 26–35, Jan. 2019, http://doi.org/10.1016/j.mri.2018.08.006
- K. Kalyvianaki, A.A. Panagiotopoulos, P. Malamos, E. Moustou, M. Tzardi, E. N. Stathopoulos, G.S. Ioannidis, K. Marias, G. Notas, P. A. Theodoropoulos, E. Castanas, and M. Kampa, “Membrane androgen receptors (OXER1, GPRC6A AND ZIP9) in prostate and breast cancer: A comparative study of their expression,” Steroids, 2019, ISSN 0039-128X, vol. 142, pp. 100–108, Feb. 2019, http://doi.org/10.1016/j.steroids.2019.01.006
- G.S. Ioannidis, T.G. Maris, K. Nikiforaki, A.H. Karantanas, and K. Marias, “Investigating the Correlation of Ktrans with Semi-Quantitative MRI Parameters Towards More Robust and Reproducible Perfusion Imaging Biomarkers in Three Cancer Types,” IEEE J. Biomed. Heal. Informatics, vol. 23, no. 5, pp. 1855–1862, 2019, http://doi.org/10.1109/JBHI.2018.2888979
- C. Spanakis, E. Mathioudakis, N. Kampanis, M.N. Tsiknakis, and K. Marias, “Machine-learning regression in evolutionary alextended methodgorithms and image registration,” IET Image Processing, vol. 13, no. 5, pp. 843–849, Apr. 2019, http://doi.org/10.1049/iet-ipr.2018.5389
- K. Nikiforaki, G.C. Manikis, E. Kontopodis, E. Lagoudaki, E. de Bree, K. Marias, A.H Karantanas, T.G Maris, “T2, T2* and spin coupling ratio as biomarkers for the study of lipomatous tumors, Physica Medica, vol. 60, pp. 76–82, Apr. 2019, http://doi.org/10.1016/j.ejmp.2019.03.023
- F. Faccio, C. Renzi, C. Crico, E. Kazantzaki, H. Kondylakis, L. Koumakis, K. Marias and G. Pravettoni, “Development of an eHealth tool for cancer patients: monitoring psychoemotional aspects with the family resilience (FaRe) questionnaire”, eCancer Medical Science, vol. 12, Jul. 2018 https://doi.org/10.3332/ecancer.2018.852
- E. Trivizakis, G.C. Manikis, K. Nikiforaki, K. Drevelegas, M. Constantinides, A. Drevelegas, and K. Marias, “Extending 2-D Convolutional Neural Networks to 3-D for Advancing Deep Learning Cancer Classification with Application to MRI Liver Tumor Differentiation,” Journal IEEE journal of biomedical and health informatics, vol. 23, no. 3, pp. 923–930, May 2019, http://doi.org/10.1109/JBHI.2018.2886276
- E. Kontopodis, M. Venianaki, G.C. Manikis, K. Nikiforaki, O. Salvetti, E. Papadaki, G.Z. Papadakis, A.H. Karantanas and K. Marias, “Investigating the Role of Model-Based and Model-Free Imaging Biomarkers as Early Predictors of Neoadjuvant Breast Cancer Therapy Outcome,” Journal IEEE journal of biomedical and health informatics, vol. 23, no. 5, pp. 1834–1843, Sep. 2019, http://doi.org/10.1109/JBHI.2019.2895459
- G.Z. Papadakis, K. Marias, C. Millo, and A.H. Karantanas, “18F-NaF PET/CT imaging versus 99mTc-MDP scintigraphy in assessing metastatic bone disease in patients with prostate cancer. Hellenic Journal οf Radiology, Volume 4, Issue 4, pp. 42-55, 2019, https://www.hjradiology.org/index.php/HJR/article/view/286
- G.Z. Papadakis, G.C. Manikis, A.H. Karantanas, P. Florenzano, U. Bagci, K. Marias, M.T. Collins, and A.M. Boyce, “F-18-NaF uptake by fibrous dysplasia bone lesions is positively associated with bone turnover markers,” J Bone Miner Res., vol. 34, no. 9, pp. 1619-1631, 2019 Sep, http://doi.org/10.1002/jbmr.3738
- E. Trivizakis, G.S. Ioannidis, V.D. Melissianos, G.Z. Papadakis, A. Tsatsakis, D.A. Spandidos, and K. Marias, “A novel deep learning architecture outperforming ‘off‑the‑shelf’ transfer learning and feature‑based methods in the automated assessment of mammographic breast density,” Oncol. Rep., vol. 42, no. 5, pp. 2009–2015, Oct. 2019, http://doi.org/10.3892/or.2019.7312
- J.M. Moreira, I. Santiago, J. Santinha, N. Figueiredo, K. Marias, M. Figueiredo, L. Vanneschi, and N. Papanikolaou, “Challenges and Promises of Radiomics for Rectal Cancer,” Current Colorectal Cancer Reports, vol. 15, no. 6, pp. 175–180, Dec. 2019, http://doi.org/10.1007/s11888-019-00446-y
- G.C. Manikis, K. Nikiforaki, E. Lagoudaki, E.de Bree, T.G. Maris, K. Marias, and A.H. Karantanas, “T2-based MRI radiomic features for discriminating tumour grading in soft tissues sarcomas,” Hellenic Journal of Radiology, Vol 4, No 3, 2019, https://www.hjradiology.org/index.php/HJR/article/view/301/0
- G.I Kalaitzakis, E. Papadaki, E. Kavroulakis, T. Boursianis, K. Marias, and T.G. Maris, “Optimising T2 relaxation measurements on MS patients utilising a multi-component tissue mimicking phantom and different fitting algorithms in T2 calculations,” Hellenic Journal of Radiology, Vol 4, No 2, 2019, https://www.hjradiology.org/index.php/HJR/article/view/293/0
- A. Kouroubali, H. Kondylakis, E. Karadimas, G. Kavlentakis, A. Simos, R. María, Baños, Rocío, H. Camarano, G. Papagiannakis, P.Zikas, Y. Petrakis, A.J. Díaz, S. Hors-Fraile, K. Marias, and D.G. Katehakis, “Digital Health Tools for Preoperative Stress Reduction in Integrated Care,” European Journal for Biomedical Informatics, Vol.16, No 2, pp. 7-13, 2019, [Online]. https://www.ejbi.org/abstract/digital-health-tools-for-preoperative-stress-reduction-in-integrated-care-5987.html
- M.S. Kalemaki, A.H. Karantanas, D. Exarchos, E.T. Detorakis, O. Zoras, K. Marias, C. Millo, U. Bagci, I. Pallikaris, A. Stratis, I. Karatzanis, K. Perisinakis, P. Koutentakis, G.A. Kontadakis, D. Spandidos, A. Tsatsakis, and G.Z. Papadakis, “PET/CT and PET/MRI in ophthalmic oncology (Review),” International Journal of Oncology, Jan. 2020, pp. 417-429, http://doi.org/10.3892/ijo.2020.4955
- H. Kondylakis, A. Bucur, C. Crico, F. Dong, N. Graf, S. Hoffman, L. Koumakis, A. Manenti, K. Marias, K. Mazzocco, G. Pravettoni, C. Renzi, F. Schera, S. Triberti, M.N. Tsiknakis, and S. Kiefer, “Patient empowerment for cancer patients through a novel ICT infrastructure,” Journal of Biomedical Informatics, vol. 101, p. 103342, Jan. 2020, http://doi.org/10.1016/j.jbi.2019.103342
- N. Tsiknakis, E. Trivizakis, E. Vassalou, G. Papadakis, D. Spandidos, A. Tsatsakis, J. Sanchez‑Garcia, R. Lopez‑Gonzalez, N. Papanikolaou, A. Karantanas, and K. Marias, “Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays,” Experimental and Therapeutic Medicine, vol. 20, no. 2, pp. 727-735, May 2020, http://doi.org/10.3892/etm.2020.8797
- A. Pampouchidou, M. Pediaditis, E. Kazantzaki, S. Sfakianakis, I.A. Apostolaki, K. Argyraki, D. Manousos, F. Meriaudeau, K. Marias, F. Yang, M. Tsiknakis, M. Basta A. N. Vgontzas, and P. Simos, ”Automated facial video-based recognition of depression and anxiety symptom severity: cross-corpus validation,” Machine Vision and Applications, vol. 31, no. 4, p. 30, May 2020, http://doi.org/10.1007/s00138-020-01080-7
- G.S. Ioannidis, K. Nikiforaki, G. Kalaitzakis, A.H. Karantanas, K. Marias, and T.G. Maris, “Inverse Laplace transform and multiexponential fitting analysis of T2 relaxometry data: a phantom study with aqueous and fat containing samples,” Eur. Radiol. Exp., vol. 4, no. 1, p. 28, May 2020, PMID: 32378090; PMCID: PMC7203287, http://doi.org/10.1186/s41747-020-00154-5
- G. Kalaitzakis, T. Boursianis, G. Gourzoulidis, S. Gourtsoyianni, G. Lymperopoulou, K. Marias, A.H. Karantanas, and T.G. Maris, “Apparent diffusion coefficient measurements on a novel diffusion weighted MRI phantom utilizing EPI and HASTE sequences. Phys. Med., Epub 2020 May 1, vol. 73, pp. 179-189, May 2020, http://doi.org/10.1016/j.ejmp.2020.04.024
- G.Z. Papadakis, G. Kochiadakis, G. Lazopoulos, K. Marias, N. Klapsinos, F. Hannah shmouni, G. Igoumenaki, T.K. Nikolouzakis, S. Kteniadakis, D.A. Spandidos, and A.H. Karantanas, “Targeting vulnerable atherosclerotic plaque via PET‑tracers aiming at cell‑surface overexpression of somatostatin receptors,” Biomedical Reports, Reports, Jun. 2020, http://doi.org/10.3892/br.2020.1316
- E. Kontopodis, K. Marias, G.C. Manikis, K. Nikiforaki, M. Venianaki, T.G. Maris, V. Mastorodemos, G.Z. Papadakis, and E. Papadaki, “Extended perfusion protocol for MS lesion quantification,” Open Medicine, vol. 15, no. 1, pp. 520–530, Jun. 2020, http://doi.org/10.1515/med-2020-0100
- C. Karamanidou, P. Natsiavas, L. Koumakis, K. Marias, F. Schera, M. Schäfer, S. Payne, and C. Maramis, “Electronic Patient-Reported Outcome-Based Interventions for Palliative Cancer Care: A Systematic and Mapping Review,” JCO Clin Cancer Inform., no. 4, pp. 647–656, Sep. 2020, PMID: 32697604; PMCID: PMC7397776, http://doi.org/10.1200/CCI.20.00015
- M.E. Klontzas, G.Z. Papadakis, K. Marias, A.H. Karantanas, “Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence,” Injury, vol. 51, no. 12, pp. 2748–2756, Dec.2020, ISSN:0020-1383, http://doi.org/10.1016/j.injury.2020.09.019
- E. Trivizakis, N. Tsiknakis, E. Vassalou, G.Z.Papadakis, D. Spandidos, D. Sarigiannis, A. Tsatsakis, N. Papanikolaou, A.H. Karantanas, K. Marias, “Advancing Covid‑19 differentiation with a robust preprocessing and integration of multi‑institutional open‑repository computer tomography datasets for deep learning analysis,” Experimental and Therapeutic Medicine, vol. 20, no. 5, pp. 1–1, Sep. 2020, http://doi.org/10.3892/etm.2020.9210
- I. Genitsaridi, I. Flouri, D. Plexousakis, K. Marias, K. Boki, F. Skopouli, A. Drosos, G. Bertsias, D. Boumpas, and P. Sidiropoulos, “Rheumatoid arthritis patients on persistent moderate disease activity on biologics have adverse 5-year outcome compared to persistent low-remission status and represent a heterogeneous group,” Arthritis Res. Ther., vol. 22, no. 1, p. 226, Dec. 2020, http://doi.org/10.1186/s13075-020-02313-w
- H. Kondylakis, C. Axenie, D. Bastola, D. G. Katehakis, A. Kouroubali, D. Kurz, N. Larburu, I. Macía, R. Maguire, C. Maramis, K. Marias, P. Morrow, N. Muro, F Núñez-Benjumea, A. Rampun, O. Rivera-Romero, B. Scotney, G. Signorelli, H. Wang, M.N. Tsiknakis, and R. Zwiggelaar, “Status and Recommendations of Technological and Data-Driven Innovations in Cancer Care: Focus Group Study,” J. Med. Internet Res., vol. 22, no. 12, p. e22034, Dec. 2020, http://doi.org/10.2196/22034
- E. Trivizakis, G.Z. Papadakis, I. Souglakos, N. Papanikolaou, L. Koumakis, D.A. Spandidos, A. Tsatsakis, A.H. Karantanas, and K. Marias, “Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care (Review),” International Journal of Oncology, vol. 57, no. 1, pp. 43–53, 2020, http://doi.org/10.3892/ijo.2020.5063
- K. Nikiforaki, G.S. Ioannidis, E. Lagoudaki, G.C. Manikis, E. de Bree, A.H. Karantanas, T.G. Maris, and K. Marias, “Multiexponential T2 relaxometry of benign and malignant adipocytic tumours,” Eur Radiol Exp. vol. 4, no. 1, p. 45, Dec. 2020, PMID: 32743728; PMCID: PMC7396415, http://doi.org/10.1186/s41747-020-00175-0
- A.I. Korda, G. Giannakakis, E. Ventouras, P.A. Asvestas, N. Smyrnis, K. Marias, and G.K. Matsopoulos, “Recognition of Blinks Activity Patterns during Stress Conditions Using CNN and Markovian Analysis,” Signals, vol. 2, no. 1, pp. 55–71, Jan. 2021, http://doi.org/10.3390/signals2010006
- M.E. Klontzas, G.A. Kakkos, G.Z. Papadakis, K. Marias and A.H. Karantanas, “Advanced clinical imaging for the evaluation of stem cell based therapies,” Expert Opinion on Biological Therapy, pp. 1–12, Feb. 2021, http://doi.org/10.1080/14712598.2021.1890711
- V. Skaramagkas, G. Giannakakis, E. Ktistakis, D. Manousos, I. Karatzanis, N. Tachos, E.E. Tripoliti, K. Marias, D.I. Fotiadis, and M.N. Tsiknakis, “Review of eye tracking metrics involved in emotional and cognitive processes,” IEEE Rev. Biomed. Eng., pp. 1–1, Mar. 2021, http://doi.org/10.1109/RBME.2021.3066072
- K. Kourou, G.C. Manikis, P. Poikonen-Saksela, K. Mazzocco, R. Pat-Horenczyk, B. Sousa, A.J. Oliveira-Maia, J. Mattson, I. Roziner, G. Pettini, H. Kondylakis, K. Marias, E. Karademas, P. Simos, and D.I. Fotiadis, “A machine learning-based pipeline for modeling medical, socio-demographic, lifestyle and self-reported psychological traits as predictors of mental health outcomes after breast cancer diagnosis: An initial effort to define resilience effects,” Computers in Biology and Medicine, vol. 131, p.104266,Apr.2021, http://doi.org/10.1016/j.compbiomed.2021.104266
- G.S. Ioannidis, E. Trivizakis, I. Metzakis, S. Papagiannakis, E. Lagoudaki, and K. Marias, “Pathomics and Deep Learning Classification of a Heterogeneous Fluorescence Histology Image Dataset,” Appl. Sci., vol. 11, no. 9, p. 3796, Apr. 2021, http://doi.org/10.3390/app11093796
- G.C. Manikis, K. Nikiforaki, E. Lagoudaki, E. de Bree, T. G. Maris, K. Marias, A.H. Karantanas “Differentiating low from high-grade soft tissue sarcomas using post-processed imaging parameters derived from multiple DWI models,” Eur. J. Radiol., vol. 138, p. 109660, May 2021, http://doi.org/10.1016/j.ejrad.2021.109660
- G.S. Ioannidis, S. Christensen, K. Nikiforaki, E. Trivizakis, K. Perisinakis, A. Hatzidakis, A. Karantanas, M. Reyes, M. Lansberg, K. Marias, “Cerebral CT Perfusion in Acute Stroke: The Effect of Lowering the Tube Load and Sampling Rate on the Reproducibility of Parametric Maps,” MDPI, Multidisciplinary Digital Publishing Institute, Diagnostics 2021, vol. 11, issue 6, June 2021, http://doi.org/10.3390/diagnostics11061121
- N. Tsiknakis, D. Theodoropoulos, G. Manikis, E. Ktistakis, O. Boutsora, A. Berto, F. Scarpa, A. Scarpa, D. I. Fotiadis and K. Marias, “Deep Learning for Diabetic Retinopathy Detection and Classification Based on Fundus Images: A Review”, Computers in Biology and Medicine, 104599, 2021. http://doi.org/10.1016/j.compbiomed.2021.104599
- G. Giannakakis, M.R. Koujan, A. Roussos, and K. Marias, “Automatic stress analysis from facial videos based on deep facial action units recognition. Pattern Analysis and Applications”, 2021. Accepted for publication.
- K. Marias, “The constantly evolving role of medical image processing in oncology: From traditional medical image processing to imaging biomarkers and Radiomics “, Special Issue Advanced Computational Methods for Oncological Image Analysis, MDPI, Multidisciplinary Digital Publishing Institute, J. Imaging, vol. 7, issue 8, p. 124, July 2021, https://doi.org/10.3390/jimaging7080124
- E. Trivizakis, G.S. Ioannidis, I. Souglakos, A. H. Karantanas, M. Tzardi, K. Marias, “A Neural Pathomics Framework for Classifying Colorectal Cancer Histopathology Images based on Wavelet Multi-Scale Texture Analysis”, Scientific reports, 11, 15546, 2021. https://doi.org/10.1038/s41598-021-94781-6
- E. Trivizakis, I. Souglakos, A. H. Karantanas, & K. Marias, “Radiogenomics of Non-Small Cell Lung Carcinoma for Assessing Molecular and Histology Subtypes with a Data-Driven Analysis”, MDPI, Multidisciplinary Digital Publishing Institute , Cancers, 2021, Under review.
- N. Tsiknakis, C. Spanakis, P. Tsompou, G. Karanasiou, G. Karanasiou, A. Sakellarios, G. Rigas, S. Kyriakidis, M. Papafaklis, S. Nikopoulos, F. Gijsen, L. Michalis, D. I. Fotiadis and K. Marias, “IVUS Longitudinal and Axial Registration for Atherosclerosis Progression Evaluation”, under review, Diagnostics, MDPI, June 2021.
- G, C. Manikis, G. S. Ioannidis, L. Siakallis, K. Nikiforaki, M. Iv, D. Vozlic, K. Surlan-Popovic, M. Wintermark, S. Bisdas, K. Marias, “Multicenter DSC-MRI based radiomics predict IDH mutation in gliomas”, MDPI, Multidisciplinary Digital Publishing Institute , Cancers, 2021, Accepted for publication.
- N. Tsiknakis *, E. Savvidaki, S. Kafetzopoulos, G. Manikis, N. Vidakis, K. Marias, E. Alissandrakis, “Segmenting 20 Types of Pollen Grains for the Cretan Pollen Dataset v1 (CPD-1)”, MDPI, Multidisciplinary Digital Publishing https://doi.org/10.3390/app11146657
- T. Boursianis1, G. Kalaitzakis, K. Nikiforaki, E. Kosteletou, D. Antypa, G. Gourzoulidis, A. Karantanas, E. Papadaki, P. Simos, T. G. Maris and K. Marias, “The significance of echo time in fMRI BOLD contrast: A clinical study during motor and visual activation tasks at 1.5T”, MDPI, Multidisciplinary Digital Publishing Institute, Tomography, Accepted for publication, 2021.
- E. Kontopodis, E. Papadaki, E. Trivizakis, T. G. Maris, P. Simos, G. Z. Papadakis, A. Tsatsakis, D. A. Spandidos, A. Karantanas and K. Marias, “Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients”, Experimental and Therapeutic Medicine, Spandidos Publications, Accepted for publication, 2021.